skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Netemeyer, Richard_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Psychometric measures reflecting people’s knowledge, ability, attitudes, and personality traits are critical for many real-world applications, such as e-commerce, health care, and cybersecurity. However, traditional methods cannot collect and measure rich psychometric dimensions in a timely and unobtrusive manner. Consequently, despite their importance, psychometric dimensions have received limited attention from the natural language processing and information retrieval communities. In this article, we propose a deep learning architecture, PyNDA, to extract psychometric dimensions from user-generated texts. PyNDA contains a novel representation embedding, a demographic embedding, a structural equation model (SEM) encoder, and a multitask learning mechanism designed to work in unison to address the unique challenges associated with extracting rich, sophisticated, and user-centric psychometric dimensions. Our experiments on three real-world datasets encompassing 11 psychometric dimensions, including trust, anxiety, and literacy, show that PyNDA markedly outperforms traditional feature-based classifiers as well as the state-of-the-art deep learning architectures. Ablation analysis reveals that each component of PyNDA significantly contributes to its overall performance. Collectively, the results demonstrate the efficacy of the proposed architecture for facilitating rich psychometric analysis. Our results have important implications for user-centric information extraction and retrieval systems looking to measure and incorporate psychometric dimensions. 
    more » « less